Article Analysis 4 Patient Preference and Satisfaction Article Analysis 4 Patient Preference and Satisfaction Search Library and find two new health care articl

Article Analysis 4 Patient Preference and Satisfaction

Article Analysis 4 Patient Preference and Satisfaction

Search Library and find two new health care articles that use quantitative research. Do not use articles from a previous assignment, or articles that appear in the Topic Materials or textbook.

Complete an article analysis for each using the “Article Analysis: Part 2” template.

Refer to the “Patient Preference and Satisfaction in Hospital-at-Home and Usual Hospital Care for COPD Exacerbations: Results of a Randomised Controlled Trial,” in conjunction with the “Article Analysis Example 2,” for an example of an article analysis.

While APA style is not required for the body of this assignment, solid academic writing is expected, and documentation of sources should be presented using APA formatting guidelines, which can be found in the APA Style Guide, located in the Student Success Center.

This assignment uses a rubric. Please review the rubric prior to beginning the assignment to become familiar with the expectations for successful completion.

Testing the activitystat hypothesis: a randomised controlled trial S. R. Gomersall1,2*, C. Maher1, C. English1, A. V. Rowlands1,3,4, J. Dollman1, K. Norton1 and T. Olds1

Abstract

Background: It has been hypothesised that an ‘activitystat’ may biologically regulate energy expenditure or physical activity levels, thereby limiting the effectiveness of physical activity interventions. Using a randomised controlled trial design, the aim of this study was to investigate the effect of a six-week exercise stimulus on energy expenditure and physical activity, in order to empirically test this hypothesis. Article Analysis 4 Patient Preference and Satisfaction

Methods: Previously inactive adults (n = 129) [age (mean ± SD) 41 ± 11 year; body mass index 26.1 ± 5.2 kg/m2] were randomly allocated to a Control group (n = 43) or a 6-week Moderate (150 min/week) (n = 43) or Extensive (300 min/week) (n = 43) exercise intervention group. Energy expenditure and physical activity were measured using a combination of accelerometry (total counts, minutes spent in moderate to vigorous physical activity) and detailed time use recalls using the Multimedia Activity Recall for Children and Adults (total daily energy expenditure, minutes spent in moderate to vigorous physical activity) at baseline, mid- and end-intervention and 3- and 6- month follow up. Resting metabolic rate was measured at baseline and end-intervention using indirect calorimetry. Analysis was conducted using random effects mixed modeling.

Results: At end-intervention, there were statistically significant increases in all energy expenditure and physical activity variables according to both accelerometry and time use recalls (p < 0.001) in the Moderate and Extensive groups, relative to Controls. There was no significant change in resting metabolic rate (p = 0.78).

Conclusion: Taken together, these results show no evidence of an “activitystat” effect. In the current study, imposed exercise stimuli of 150–300 min/week resulted in commensurate increases in overall energy expenditure and physical activity, with no sign of compensation in either of these constructs.

Trial registration number: ACTRN12610000248066 (registered prospectively 24 March 2010)

Keywords: Physical activity, Energy expenditure, Accelerometry, Compensation

Abbreviations: Kcal, Kilocalories; MARCA, Multimedia activity recall for children and adults; METs, Metabolic equivalents; min, Minutes

Background Physical activity has many important physical and psy- chological benefits, including reducing the risk of cardio- vascular disease, type II diabetes, depression and some cancers, as well as increasing life expectancy [1, 2]. In recognition of this, many countries have developed

guidelines for minimum physical activity levels; however, many adults fail to meet such guidelines. Insufficient physical activity continues to be a major and costly con- tributor to the global burden of disease [2]. As such, ef- forts to increase population physical activity levels are an important preventative health measure. A multitude of studies have been undertaken with the

aim of increasing individuals’ or groups’ daily physical activity levels. Such studies have taken a variety of forms, including group-based programs, self-management pro- grams and mass media campaigns. However, like many behaviour change interventions, physical activity inter- ventions generally have limited success, achieving

* Correspondence: s.gomersall1@uq.edu.au 1School of Health Sciences, Alliance for Research in Exercise, Nutrition and Activity, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia 2School of Human Movement and Nutrition Sciences, Centre of Research on Exercise, Physical Activity and Health (CRExPAH), The University of Queensland, Brisbane, Australia Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gomersall et al. BMC Public Health (2016) 16:900 DOI 10.1186/s12889-016-3568-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-016-3568-x&domain=pdf
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ID=335245
mailto:s.gomersall1@uq.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
minimal or only short term change [3]. In fact, a system- atic review and meta-analysis demonstrated that physical activity interventions in children had minimal effect on overall physical activity levels [4]. This review included 30 studies, with objective accelerometry data from over 6,000 participants. The level of recidivism with physical activity interventions is notoriously high, often cited at 50 % drop out after six months [5], even when the stimulus to exercise is still continuing. One explanation that has been proposed to explain the

limited success of physical activity interventions is the ‘activitystat’ hypothesis. First described in 1998 by Dr Thomas Rowland, the activitystat hypothesis suggests that when an individual increases their physical activity or energy expenditure in one domain, there is a com- pensatory change in another domain, in order to main- tain an overall stable level of physical activity or energy expenditure [6]. Physical activity interventions typically treat physical activity as a voluntary behaviour that may be changed in a sufficiently informed and motivated in- dividual. However, the activitystat hypothesis proposes that this mechanism is biologically regulated, with an activitystat taking on the characteristics of a homeostatic feedback loop, whereby a setpoint of physical activity or energy expenditure is maintained by compensatory ad- justments through, as yet undetermined, mechanisms. It is important to clarify that the concepts of biological control of energy expenditure and the activitystat hy- pothesis are not co-extensive. There is considerable evi- dence based on rodent and human research to support the broader concept of biological control in energy ex- penditure regulation [7, 8], however the activitystat is a specific model of how biological mechanisms may oper- ate using a homeostatic model. The question of if, and how an ‘activitystat’ may underpin our energy expend- iture and physical activity has been actively debated in the literature [9]. Compensation, or substitution of habitual or baseline Article Analysis 4 Patient Preference and Satisfaction

levels of activity, is not often taken into account in exer- cise intervention studies [10]. A systematic review of the literature has previously identified 28 studies that had experimentally investigated compensation in physical ac- tivity or energy expenditure and as such, the activitystat hypothesis [11]. The results of this review suggested that there is conflicting evidence as to the existence of an activitystat with 63, 40 and 80 % of studies involving children, adult and older adult studies respectively, reporting evidence of compensation in either physical activity or energy expenditure [11]. Several experimental papers investigating compensation have been published since this review [12–21], and similarly report conflict- ing results. In children and adults, several recent studies have shown some evidence of compensation with an im- posed exercise stimulus [12–15], however there are at

least as many that demonstrate no evidence of an activi- tystat or compensatory effect [16–19]. By contrast, re- cent studies in older adults have provided some evidence of compensation [20, 21]. A significant limitation to the current literature is that

there is a lack of consistency in the methodological ap- proaches used to investigate the activitystat hypothesis and compensation. As a result, the systematic review [11] included a number of recommendations for future studies. These included but were not limited to: meas- urement of both energy expenditure and physical activity using a variety of high-quality measurement tools; that activity should be assessed over sufficiently long periods and sufficiently regularly to detect compensation (with a recommendation of 4–12 weeks); that the exercise stimulus should be sufficiently high to trigger a sup- posed compensatory mechanism; that analyses should be ‘per protocol’ to ensure exposure to the stimulus; and finally, that a control group should be used to account for shifting baselines [11]. To date, no study comprehen- sively covers this methodological framework. To address this gap the current study was specifically

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more